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Self-similar evolution of a twin boundary in anti-plane shear
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Abstract. This paper studies the transient motion of a twin boundary in two dimensions. The twinning defor-
mation is described as an anti-plane shear deformation with discontinuous strains. The material is assumed to
be compressible and hyperelastic with a stored energy function consisting of multiple potential wells. The quasi-
steady-state evolution of a twinning step is studied. The model includes an anisotropic kinetic relation that governs
the twin boundary motion in two dimensions under applied stress. A self-similar solution for the motion of the
twinning step is found with a specific initial shape. General solutions to the linearized evolution equation are
established in the form of an infinite series for arbitrary initial shapes. Stability of the self-similar solution is
discussed.
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1. Introduction

Under applied loading, crystals often undergo deformations that develop microstructure with
lower energy level. Deformation mechanisms such as twinning and phase transformation al-
low the crystal to accommodate large deformations. Microstructure involving layers of twins is

a prominent feature of stress-induced phase transformations. They are often observed during
the formation of austenite-martensite interfaces. The evolution of these twin boundaries is
responsible for the shape-memory effects of certain alloys and plays a key role in the plastic
deformations of metals under high velocity loadings [1].

In the state produced by twinning, a part of the material suffers a large shear relative to
the rest. The two portions are separated by a sharp interface called the twin boundary. Special
shear strains cause both sides to exhibit almost identical lattice structures with difference
only in their orientation. The twin boundaries are in general coherentthe deformation is
continuous but the strains have a finite jump across the twin boundaries.

A continuum-mechanical theory capable of modeling deformation twinning and various
phase transformations is derived through the works of Ericksen [2, 3], Knowles and Sternberg
[4, 5, 6], James [7, 8, 9], Gurtin [10] and Abeyaratne and Knowles [11, 12, 13]. The approach
is to model the deformations by elastic fields with discontinuous strains across the boundaries.
The stored energy function consists of multiple wells, each corresponding to a phase or vari-
ant. The strains on each side of the phase boundaries must stay relative close to the well in
order to avoid the unstable regions that separate the wells in the strain space.

For twinning deformations, additional considerations must be taken to account for the
special symmetry associated with twinning. For this purpose, Rosakis and Tsai [14] pro-
posed a nonlinear elastic constitutive law for body-centered cubic crystals. The resulting
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Figure 1. Typical shape of a twinning step. The shaded area indicates material in véyjagthe unshaded area
40. The curved portion of the twin boundary is in the inte&@le (—=d(1),d(t)). The moving frame%l—yocz has

the velocityVey.

stored energy function possesses multiple wells, each corresponding to a twin variant, and
embodies regions of unstable shears associated with failure of ellipticity. The structure of the
mechanical behavior for anti-plane shear is deduced from considerations of lattice symmetry
by Tsai [15] and is consistent with the twinning modes in BCC lattice. Based on this model,
the displacement fields associated with a twin needle in equilibrium as well as its steady-state
propagation are obtained [15, 16]. Similar to the dynamic phase boundary propagation in one-
dimensional bar [17, 18], the motion of the twin boundaries is not determined. The lack of
unigueness can be overcome by imposing a kinetic relation governing the normal velocity of
the moving boundary. A special anisotropic kinetic relation is proposed by Rosakis and Tsai
[16] to account for the preferred orientation of the twin boundary. They conclude that under
the special kinetic assumption the subsonic steady-state propagation of a twin needle can not
occur, while one can construct a displacement field for the supersonic growth provided the
critical applied stress is exceeded. Therefore, the subsonic growth of twin needles is not a
steady state and must be transient in nature.

In this paper, we consider the transient motion of a twinning step under applied loading in
the setting of anti-plane shear. We formulate the quasi-steady-state motion of a twinning step
which is aligned with the preferred orientation of the twinning structure except over a bounded
and curved region (see Figure 1). The twinning step is moving toward its axial direction with
small variation from the average propagating velocity. With respect to a moving frame at the
average velocity, the motion of the twin boundary with respect to this frame is assumed to
be quasi-static. Under this approximation, a closed form solution for the displacement field
is obtained. We study the implication of a special anisotropic kinetic relation which relates
the normal velocity to the driving force as well as the orientation on the twin boundary. The
evolution of the twin boundary is found to be governed by an integro-differential equation.
We seek a self-similar solution which approaches but never achieves a steady state as time
increases. This self-similar solution consists of a special initial shape. We also analyze the
linearization of the evolution equation in the case that the twin boundary assumes an arbitrary
initial shape. The stability of the self-similar solution and the limitation of the linearization
are discussed.
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The outline of the paper is as follows. The basic formulation of the anti-plane shear model
of twinning is described in Section 2. The fundamental displacement field is presented in
Section 3. Displacement field associated with the quasi-steady-state motion of a twinning step
is established in Section 4. In Section 5, the kinetic relation is used to derive the governing
equation for the twinning step evolution. A self-similar solution is found for a specific initial
shape of the twin boundary. Linearization of the evolution equation is performed in Section 6
to study the general motion of twinning steps.

2. Anti-plane shear formulation of twinning deformations

Consider a body which occupies a cylindrical regiarin its reference configuration. Define
an orthonormal basigey, e, 3} with e; along the axis ofR. The cross section is denoted by
the two-dimensional regiofl on the plane spanned lgy ande,. The vectoly is the position
of a material point that occupies the positioiin the reference configuration. An anti-plane
shear motion of the body is characterized by the deformation:

Y =X+ UX, 1) =X+ u(xy, xp,1)€3 VXeR, teT, (2.1)

whereu is the out-of-plane displacement field defined on the cross-sertion the(xq, x5)
plane. Here we assume thatis smooth in and at least twice continuously differentiable
in TT except possibly on a collection of piecewise smooth surfatedVe define the two-
dimensional shear strain vectpis follows:

Y = Ya€y = U 4. (2.2)

The shear strain is allowed to have jump discontinuities acipshile keeping the displace-
ment continuous. Notice that the surfadamnight move through the cross-sectifinduring a
dynamic process; their motion is determined by the scalar normal veldcifihe continuity
of displacement across, requires the following jump conditions be valid an:

[[M,oc]]lu =0, (23)

Hu]] + Hu,u]]nuvn = O, (24)

wheren = ngg, is the unit normal t&, andl = /,e, is the unit tangent t&; on the(xq, x,)
plane.

For a class of elastic materials, the full three-dimensional equations of linear momentum
balance are reduced to a single equation involving the out-of-plane displaceraedtthe
shear stress componeits, of the Piola-Kirchhoff stress tensor:

O30,0 = PU, onIl — %, (2.5)

where the mass densityis assumed to be constant. The other two in-plane equations are au-
tomatically satisfied when certain restrictions on the material constitution are imposed. A dis-
cussion of dynamic anti-plane shear for this special class of materials in a three-dimensional
setting can be found in [19]. OB,, the balance of linear momentum reduces to the traction
jump condition:

losllng + plElV, =0 onX,. (2.6)
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The material under consideration is assumed to be compressible and hyperelastic. For anti-
plane shear deformations, the store energy density can be reduced to a function of the shear
strainsy. Denoting the stored energy function by(y1, y2), we may give the shear stresses

o3, by the following constitutive relation

ow
IVa

03y = — (Y1, Y2)- (2.7)
Twinning in crystals involves a planar twin boundary across which the strain suffers discon-
tinuities. On one side, the material is deformed by a simple shear along a direction parallel to
the twin boundary. The resulting lattice structures on both sides of the twin boundary are iden-
tical but differ in orientation by a reflection or a 18fbtation. The direction and the amount
of the shear can be determined once the geometry of the original lattice structure is known.
The boundary is coherent in the sense that the displacements remain continuous across the
twin boundary, while the sharp interface indicates a jump in the strains. A continuum model
of twinning in the content of finite elasticity has been developed by Ericksen [20], James [9]
and Pitteri [21]. A constitutive model for BCC crystals incorporating the lattice geometry is
constructed by Rosakis and Tsai [14]. By choosing the twinning shear direction [111] to be the
out-of-plane directiore;, we can describe the finite shear associated with twinning as an anti-
plane shear deformation. There are three possible directions of the (112) type for the normal
of the corresponding twin boundaries. If one of them is taken to be agnifpe twinning

shear vectors corresponding to these three twinning modes-arg, i = 1, 2 or 3. Since the
amount of shear is//2, letting&® = 0, the components of these vectors are:
(2,69 = (0,0), (£1,83) =£(0, ), L
NER V3 1 £E=—. (2.8)

As shown by Rosakis and Tsai [14], the stored energy funatianust have global minima

aty = £°, €1, £2 andg&®. The material is stress-free when the shear strains are at these values.
Around each minimum, there is a disjoint region within which the energy function is con-
vex. Outside these regions, the energy is not convex and hence is considered unstable. For
simplicity, assume these regions are given by

Si={yl ly—¢| <3} (2.9)

These regions on the shear strain plapg y,) are referred to as variants; each is a disk of
radiusd < &/2 centered at the corresponding energy minimum. For reasons of stability, the
strains can only take values in these variants. For a deformation involving shear strains in
two different variants, a twin boundary forms to separate materials associated with strains
in different variants. The strains are necessarily discontinuous across the boundary and must
satisfy the jump conditions (2.3), (2.4) and (2.6).

A specific stored energy function that is consistent with BCC symmetry is given by

w(y):%w—gilz, vyes, i=0120r3 (2.10)

whereyp is the shear modulus. This energy density function is isotropic in each variant. Since
the lattice structures are identical at the center of each variant, the shear moduli must be
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the same. In the subsequent analysis, we adopt this constitutive model and assume that the
stored energy density be given by (2.10). Also, we restrict the consideration on twinning
deformations formed by the variant pdg and ;. With the stored energy density (2.10), the
eqguation of motion (2.5), in terms of the out-of-plane displacenaemeduces to the wave
equation:

2 1. 0

Vou = —ii onll— %, c=_[/—. (2.11)
¢ p

On the twin boundary,, the following jump conditions must be valid:

IIu,u]]lu — 0’
[[M]] + [[u,oc]]nuvn =0, on ;. (212)
[ e + 200 = [, Ina.

It is now well known [22, 23] that during a deformation process, the total mechanical en-
ergy associated with an elastic material may dissipate due to the presence of moving surfaces
across which the strains suffer jump discontinuities even though the material is elastic. Under
the current setting, the energy dissipation rate due to a moving twin boundary for a subregion
& € TI can be expressed as the following line integral:

5P 1) = / F (51 x2, 1)V (1, %2, 1) O, (2.13)
N3,

where the functionf, defined on the twin boundar,, is called the driving traction and can
be shown to take the form:

fx1, x2, 1) = —[wll + 3[uol(03, + 03,). (2.14)

where the superscripts indicate the limits}ads approached from two different sides. In this
paper, we choose the unit normalof the twin boundary to be pointing into the “-side.
Therefore, the normal velocity of the twin boundary is positive if the twin boundary is
moving toward the =" side. For a twin boundary between variarfig and §,, the driving
traction specializes to

=Bt = 205+ op). (2.15)
In what follows, we will choose thé, variant as the “"side; unit normalin pointing into the
“—"side. In a more general setting for thermoelastic materials [23], the energy dissipation rate
in (2.13) is shown to be proportional to the entropy production rate, which is required to be
non-negative by the second law of thermodynanii¢$,, ) > 0. It follows from localization
that the following inequality must hold:

fv,>=0 onx,. (2.16)

This condition restricts the directions a twin boundary can move.
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Figure 2. Decomposition of a twinning step into two parts: a semi-infinite twin needle and a perfect twin boundary
with piecewise linear displacement.

3. Fundamental solutions

In the case of stationary twin boundaries, the equilibrium takes the form
Viu=0 onl-%,. (3.1)

Consider twin boundaries formed by variafitand 8, such that the transformation strain is
£e,. The jump conditions (2.12) oR; become

a loc = 0,
{ .01 onx;. (3.2

[[u,u]]noc = EnZ

A displacement field associated with a bounded twinned regias found [24, 14] to be

u(x) = ;—j/ log [X — z|n2(2) ds,. (3.3
9D

The above displacement field approaches zemo gaes far away from the bounded region

D. The material insideD is of variant$1, while outside ofD the material is in variant.

The displacement in (3.3) satisfies (3.1) and the jump conditions (3.2). In order to have strains
confined in the respective variants, the unit normal of the the twin bourtd@ryas to be

close enough to the direction of the transformation steairThis restriction imposes severe
conditions on the shape @ [24, 14]: Only slender, needle-like regions with the outward
normaln close in direction to the, direction are possible. This is in good agreement with
experimental observation of twin needles. Besides these qualitative restrictiofs tire

exact shape ap is otherwise arbitrary.

The above displacement field (3.3) is modified [15] to obtain the displacement fields asso-
ciated with a semi-infinite twin needle and a twinning step. In the latter problem, the infinite
domainTI is separated by the curve = s(x;) into two parts,.M and D; each contains
material in variants§, and 41, respectively. The shape of the boundary is assume to satisfy
following properties:

s(x) = —h for x > dp,

s(x)=nh for x < —dj,

(3.4)
s'(x) <0 for |x| < dp,
s'(£dp) = 0.

The shape of the twin boundary has a curved part betwgen =+d,. Outside this region,
the twin boundary is flat. Twin boundaries of this kind are referred to as twinning steps. A
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typical shape of is shown in Figure 1. The displacement is given by the superposition of
two displacements. One associates with a semi-infinite fviand the other is a piecewise
linear field constructed by the shear strainand&e,. See Figure 2 for an illustration of the
decomposition. Lek denote the displacement associated with the stationary twinning step
(3.4). Then it is given by the superposition of two fields,

Up =up +ug, (3.5)
where
0, for x, > —h,
h= (3.6)
E(xo2+ h) for x, < —h,

is the piecewise linear field associated with the flat boundary and

£ /
s(X) = —=— lim log|x — d 3.7
U (X) 2 A . gIx — zln2(2) ds, (3.7)
is associated with the semi-infinite twin needle (Figure 2). Hegds a circular region of
radiusR centered at the origin. It is shown that [15] the displacement field (3.5) satisfies the
equilibrium (3.1) and the jump conditions (3.2). Furthermore, the shear styaih for the
twin step (3.4) has the following limiting values:

L s@-st) :
S+ % 3.
][_R (z —x1)2 4 [s(z) — s(x1)]2 dz + 2[ n2(X)] onx,.(3.8)

Note that the '+’ side is chosen to be the region with higher straifsand the =’ side, $o; n
pointing into the =’ side. The symbol{' denotes the Cauchy principal value of an integral.

£ .
l/tf;)’z(X) - ERIEnoo

4. Quasi-steady-state motion

In this section, we consider the quasi-steady-state motion of a twin boundary definge:by
s(x1, t) as depicted in Figure 1. We focus on the twinning deformation formed by the variants
4o and ;. The displacement satisfies the wave equation (2.11) with the jump conditions on
the twin boundary:

[ull =0,

i 4.1
[u o lIne + %[[M]] = Ensy on (4.1)

The phase boundary is moving along thelirection with velocityw = V (xq, t)e;. We assume
that this velocity is close to the average velodityn the sense that the motion of the boundary,

observed in a moving frame with veloci¥e,, can be approximated by a quasi-static motion;
i.e., the inertial effect with respect to the moving frame can be ignoredx{andx, be the

coordinates in the moving frame with velociie;. Utilize the following change of variables

;1=X1—‘O/l‘, ;2=Xz (42)
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and define the displacement in the moving frame by

w(x1, X2, 1) = u(x1, x2,1)  With x1 = X1+ V¢, x2 = Xo. (4.3)
Also, denote the shape of the twin boundaryﬁb,yin the moving frame, then we have

%, = (X = X161 + X265 | X2 = 5(x1, 1)) (4.4)
in which the functions is given by

S 1) = s(q + Vi, 1), (4.5)
Following (3.4), the functior has the following properties:

s(x,t) = —h  forx >d()

s(x, 1) =h forx < —d(t)
. R forall z. (4.6)
Se(x, 1) <0 for x| < d()

5. (Ed(t), 1) = 0.

The interval(—d(z), d(t)) represents the curved region of the twin boundary. Outside of this
interval, the twin boundary is flat and aligned with thedirection.
Note that the normal velocity of the twin boundary is given by

_ ST _ S,—
= > = -
Vit st \/1+sj

wheres, ands, denote the partial derivatives with respect to the spatial variables, while
ands, are the partial derivatives with respect to time. Therefore, the underlying assumption

for quasi-steady-state motion is that < |5.]. Substituting (4.3) in (2.11), and ignoring the
inertial terms in the moving frame, we arrive at the quasi-steady-state equation:

Vi = ‘O/n + ‘O/nl ~ ‘o/nl (47)

02
V o o °
(1= Z)un+uzx=0 onll—3,. (4.8)
The jump conditions (4.1) become
ull =0, o
2 onx,. (4.9)

(1 — Yol alng + [ 20z = Enz
Note that since the inertial terms are ignored, the varialskerves merely as a parameter for
the motion. Equations (4.8) and (4.9) can be further simplified by rescaling, theis using

* o * o . l
X1 = \X1, X2 = Xp; with A = ——. (410)

02
1-V /c?
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Let the displacement in the rescaled moving frame be denoted by

(X1, X2, 1) = u(x1/ N, X2, 1) (4.11)
and the twin boundari, be given by

Xp = s(x1, 1) = s(x1/M 1) (4.12)
It can be shown that the displacemématisfies

i1t in=0 onl—%, (4.13)

with the jump conditions

;/kl == 0, *
L] onx,. (4.14)

H;,l]];;l + [[ikt,z]]lzz =tny

Here,n, is the components of the unit normal to the bouncé;yEquations (4.13) and (4.14)

are identical in form to (3.2) and (3.3). Hence, in the rescaled moving frame, the quasi-steady
state motion of a twin boundary takes the form of a one-parameter family of equilibrium field.
The displacement is then given by

(X1, X2, 1) = Uy (X1, X2) (4.15)
whereuu% is the fundamental field given by (3.5), (3.6) and (3.7), with the re¢ioreplaced

by ik),. According to (3.8), the shear strajn at the boundary is given, in the moving frame,
by

)\' . R o O’ o o O ’ R
y2 = 22 lim ][ e dz
M R0 R \2(z — X1)2 + [5(2. 1) — s(x1. )]
1 o
LS ) onx,. (4.16)

In view of (2.15), the driving traction at the boundary is given by

2
£ M

27T R0

R Oo’t _O o ’t . °
][ $@.0) =5 1) &  onx,. (4.17)

RI2(2 = X1 + [$(Z, 1) — $ (¥, O
The stress field associated with (4.15) has vanishing remote stresses. If a constant remote shear
stresssge; is present, the shear strain figlglis

)\ R o O,t _ o o ,t °
Y2 = —E lim f 5 OS(Z ) ° :(X1 )o o dZ
23‘( R—o0 R )\Z(Z_xl)z-i-[s(z, t) _S('xl, t)]z
: 1 3
+3(1+ )+yvo On%,. 19

2 o2
\/1+ s, (x1,1)/2\?
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whereyg = oo/ is the excess remote shear strain. Consequently, the driving force becomes

ALE ][R Sz, 1) — $(X1, 1)

f = lim _ SO D I i 4pkye on,.  (4.19)
RNz —x1)? +[s(z, 1) — s(x1, D]

27T R—>o0

5. Kinetic relation

In the previous section, the displacement field is obtained once the position of the twin bound-
ary is specified. Apart from the slope restriction soauch that the strains on both sides will

be confined to the respective variants, the motion ¢ not determined. With the above
constitutive model, the remote stregsfails to determine uniquely the motion of the twin
boundary. A similar loss of uniqueness is encountered by Abeyaratne and Knowles [17] in a
one-dimensional problem. To remedy this situation, a kinetic relation which relates the normal
velocity of the twin boundary to the driving traction will be imposed. In particular, we are
interested in the consequence of the following kinetic relation

Vy = K flnal. (5.1)

This is first proposed by Rosakis and Tsai [16] in the study of steady state motion of twin
boundaries. This relation models the motion of a twin boundary in which the normal velocity
is proportional to the driving traction with fixed normal direction. The velocity increases when
the normal direction deviates from the preferred directignA detailed study by Tsai [15]

showed that in the case of subsonic propagation<(c), the steady state motion of a twin step
is not possible for a wide class of kinetic relations including (5.1). In what follows, we will
study the quasi-steady-state motion of a twinning step under the influence of applied (remote)

stresssg = pyp With subsonic average propagation spegd<{ c¢). Notice that

V, = Vi + —— = withny = — =. (5.2)
V1+s, V1+s,
Substitute (4.19) and (5.2) in (5.1) and chodse- K &y to find
o g2k (R $(z,1) — s(x1, o
Sy = — he s lim ][ ° OS(Z ! o f(Xl t)o o dz. (5.3)
21 R=00J R N2(z — x1)2 + [s(z, 1) — s(x1,1)]?

Utilizing the fact that the slope of is required to be small, we can approximate the above
equation by (see Appendix A)

i o o

. 2K, RS2 1) o 2K , NeR
o= MG m RG0S [RED
21N T R—ooJ_p (Z —x1) 21N (2 — x1)
—d(t)
for x1 € (—d(t), d(1)). (5.4)

Here we recognize the fact that = 0 in the flat portion of the twin boundary. In addition,
by virtue of the kinetic relation (5.1) (also reflected by (4.6)), the normal velocity of the twin
boundary should be zero on the flat portion.
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Equation (5.4) is a nonlinear integro-differential equation that governs the motion of the
twin boundary characterized by the function The following theorem establishes a self-
similar solution to this equation.

THEOREM 1. A solution to (5.4) is given by

]

o o X1
1) = g(—— 5.5
s(x1, 1) g(d(t)) (5.5)
where the functior is defined by
+h for n< -1,
2
gm=1 _2 [arcsir(n) +1v/1— nz] for —1< n<1, (5.6)
T
—h for n>1

and

2K WE%h
d(t) = \Jd2+2D1, D= ;f . (5.7)

Proof. Let |5€1| < d(t) be the region of the twin boundary with non-zero slope. Assume the
functions take the form of (5.5). Substitute into (5.4) and separate the variables to find that
ME*K 1 ][1 g'®

2tk n /o1 (C—m)

whereD is an unspecified constant. It follows that) takes the form of (5.7)with dp being
the initial value ofd at: = 0. In addition,g satisfiesg(n) = A for £ > 1 and

d(n)d(r) = do=D, n=ux1/d0) (5.8)

1 1

g'(©) 2n\D
dc = for |n| < 1. 5.9
foye=mm " 59

Equation (5.6) follows from the identity (see Appendix B)
1 1 _ cz

dt=—m= 5.10
][_1 €c—m ‘ " (5.10)

and the boundary condition8(+1) = 0 andg(+1) = Fh. This completes the proof.

The self-similar solution in (5.5) gives a monotonous shape of the twin boundary with
negative slopes. The shape evolves in the fashion that the curved region grows while the
slopes flatten. The unit normal of the twin boundary tends to the preferred direstidhe

length of the curved region is given byl@) = 2,/d3 + 2Dt in (5.7). In the curved portion
of twin boundary [¥1] < d(¢)), the difference between the actual propagating velocity along
x1 and the average velocify can be easily found to be

o St ° x1D
V=V-—=—= +—
Sy d
o ; D o
= V4+-——V =KEop ast — oo. (5.11)
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~h ¢
Figure 3. The evolution of the twinning step with initial shape given by the self-similar solution (5.6). The
twinning boundaries are drawn darker as time increases. (The axes shoﬁ\iremdz;z.)

Therefore, the propagation velocity approaches the average Valugch is proportional to

the applied shear stresg. Figure 3 shows the shapes of a evolving twinning step at different
times. Notice that the above solution (5.5) admits only the special shape given by (5.6)
Namely, if the initial shape of the twin boundary is not of the form givenghin (5.6), the
evolution of the shape might differ dramatically from the above solution.

6. Linearization of the evolution equation

In this section, we perform the linearization of the evolution equation (5.4) for a twinning step
with initial shape close to that of the self-similar solution (5.6). Consider the twin boundary
characterized by the following

$(¥a,1) = gm) +ep(n, 1) (6.1)
with

N = x1/d(1), d(t) = \/dZ + 2D, D = 2Kp&2h/m. (6.2)

Here p is the variation from the self-similar solutiangiven by (5.6).e is a small parame-
ter. Substitute (6.1) in the evolution equation (5.4) and take the first-order terms to find the
linearized equation fop:

1 /l_ 2
—Dnp, +d(t)*p,(n,t) = ——g( )f pc”(_c t) ?][1 c—nc de. (6.3)

Using the following identity (Appendix B)

1 =7 for Inl <1,
/ 2
][ Cl— T]c dd=1] —-nt(n—yn2-121 for n>1, (6.4)

—nt(n++/n2-1) for n< -1,
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one finds the linearized evolution equation foin three cases:

D [ P&

a0?pnn = 2VI-1E f P20 fori<1 (6.5)

d(®)?p,(n,1) = Dyn2 = 1p,(m,1)  form > 1, (6.6)
and

dt)’p:(,t) = —Dyn2—1p,(n,1)  forn < -1 (6.7)
The initial condition is given by

p(,0) = po(n) = [s(don, 0) — g(n)]/. (6.8)
The equations fom| > 1 can be solved by use of the following characteristics

d

NtV —l=(t+ V7 >d(°) t>1 (6.9)

and
V1= -V -1 do 1< -1 (6.10)

dit)’

Along each characteristic line (starting from the pdintz) = (<, 0)) the value of the function
p remains constant. This leads to the solutionpdor |n| > 1.

2d 2d() vn2—1) forn > 1;
d
po(ﬁ(n—m - )+—(n+\/n —1) forn<-1

2d (1)

Po n2—-1

p(n,1) = (6.11)

Note that, in thed,n) plane, the slopes of the characteristics are negative forl and positive
forn < —1, respectively. (See Figure 4). It follows that if the initial valuep @itr = O vanish
outside the interval—1, 1], thenp(n,#) = 0 for all [n| > 1 ands > 0. The support of the
function p(n, #) at any time will be always contained ljy-1, 1]. Consequently, the curved
part of the twinning step is always bounded by the intefval (z), d(¢)]. For twinning steps
with the curved part of the initial shape bounded, one can choose a suitable vajusodhat
po(m) = 0 outside the intervdl—1, 1]. We are left with the evolution equation far| < 1:

1
d(t)zp,(n, 1) = 2\/1— nz][ % dc for|n| < 1 (6.12)
-1 -

Notice the limits of the integral have been changed to account for the zero slope outside
[—1, 1]. Separate variables by definipgn, 1) = P(n)L(¢). It follows from (6.12) thatP and
L are governed by

d?()L'(t) = —c?L(1) (6.13)
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Figure 4. Characteristics of the linearized evolution equation|fgr> 1. (The axes shown afgandt.)

~T

and
2np 1 P
_ P —][ ﬁdg for |n| < 1, (6.14)
1-—12 18—
wherec is an nonzero constant. The solution to (6.13) wWitl®) = 1 is given by
2 2
do ¢¢/2D |: do ]C /D
L) =|—=—— =|— . 6.15
® (dg + 2Dt> d(t) (6.15)

Equation (6.14) can be transformed into an ordinary differential equation as follows. First,
notice that the Cauchy principal value integral in (6.14) is the finite Hilbert transforfi.of
Using the inverse transformation formula [25, pp. 13], one finds

][ P (C)
V1—1? ¢— Tl
Differentiate the above equation with respectjtand use (6.14) and (6.16) to find thAt
satisfies

ntDP'(n) = (6.16)

2,2
2 I / C_ —
(1—n?)P —qP + (D) P=o0. (6.17)

This equation is satisfied by the Chebyshev polynomials [26, pp. 195]. However, in order to
keepP (+1) = 0, the solutions to (6.17) should be

cogk arcsinm)), k=c?/D=135,...
Pem =1 . ) (6.18)
sin(k arcsinm)), k=c°/D=246,...
Therefore, the following functions satisfy (6.12):
. do 7%
0 = BLyo)  with Lo =[5 ] k=123 (6.19)

with p,(£1, r) = 0 for all t. The general solution to (6.12) can be constructed by the infinite
series

p, 1) =Y AcPc(m)Li(1). (6.20)
k=1
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SinceL;(0) = 1 for all k, the coefficientsA; can be determined by the initial valpg(n) =
p(n, 0) in the following expansion,

po(n) = Y AcPe(n). (6.21)
k=1

Similar to the Chebyshev polynomialg, () can be shown to be orthogonal on the interval
(—1, 1) with respect to the weight functiory J/ 1 — n?. The coefficientsA; are then given by
the following formula

1
J po(m)Pc(m)(v/1 —n?~1dn . .
A== = ;/ po(n)Pk(n)li dn. (6.22)

1 . 12
[ PEM(/1—1?)~1dy
-1

The above expansion is based on the restriction Bhatust vanish at the end poings= +1.

This requirement is implied by the condition that the growth of the curved portion of the twin
boundary must be contained by the inter¢aali (), d(¢)). However, the slopes @, in (6.18)
approach infinity ag) tending to+1. Since the linearized equation (6.5) is derived under
the assumption of small slope of this result indicates that the higher-order terms play a
significant role in the evolution of the twinning steps. The stability of the self-similar solution
can not be properly analyzed without a fully nonlinear analysis on (5.3).

7. Concluding remarks

A quasi-steady-state evolution of a twin boundary under the setting of finite, anti-plane shear
deformations has been presented. A continuum mechanics framework that models the sharp
twin boundaries as discontinuities in strains has been adopted. The displacements are every-
where continuous. A special kinetic equation relating the driving traction and the propagating
velocity of the twin boundary is assumed. The anisotropy in the kinetic relation accounts for
the directional preference in the twinning mechanism. Displacement field associated with an
infinite twin boundary with a kink has been found. This special self-similar solution consists

of a special initial shape and approaches but never achieves a steady state as time increases.
The average propagation speed has been found to be determined by the remote shear stress.
Linearization of the evolution equation revealed that, for small slope variation, solutions with
arbitrary initial shapes tend to stay close to the self-similar solution. However, the small slope
assumption can not be maintained near the end points of the curved portion of the propagating
twin boundary.

The continuum model and especially the anisotropic kinetic relation employed in this pa-
per could be used to investigate other types of two-dimensional deformations, such as plane
deformations. It is anticipated that such solutions will be qualitative similar to the self-similar
one presented here for anti-plane shear.

It remains unsettled whether the solutions with general initial shape will converge uni-
formly to the self-similar solution. Further investigation into the stability of the self-similar
solution is required to clarify this issue.
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Appendix A. Approximation of s, in (5.4)

We need to show that

R o o o o o o
][ s(z,1) —s(xg, 1) o sx(z,1)

I = lim — — — dz%lim][ —F—dz.  (AD
RAN2(z —x1)2 4+ [s(z, 1) —s(xq,1)]? R=o0J R \2(z — x1)

R—o00

First observe the following identity (omitting:

$(2) =5 (1) _ 5: ()@ —x)
22z —x1)2+[5(2) —s(xD2 W2z —x1)2 + [5(2) — s(x1)]?
—EEO arctan w : (A2)
N dz Az —x)

Integrate both sides with respectzérom —R to R in the sense of Cauchy principal value to
find

R o] o ] o o O o O
. ][ _ LG@E-D _arctan{smo—sgxl)}
e A(z = x1)? + [s(2) — s(x1)]? Mz —x)
Note that the last term vanished whrapproaches infinity. Equation (A1) follows with the
approximation:

R

(A3)

—R

Ox o [e] _ o OX [e] 1 OX o
o oS (Z)(Zo OX) o o = j (Zz 2 ~ so(Z)o . (A4)
WE-RPHEO —S@P G-, [§<Z> - §(5él)} 22z — x)
(z—x1)
Appendix B. Evaluation of the integral (5.10)
Let I be the integral in (5.10). Defire= sin6 anda. = 7t — 6. It can be shown that
/2 526 3n/2 52 1 27 529
I =][ 959 4 :][ 0% = —][ S Y_ e, (B1)
sSing — 1 Sina — 1 2J) sing—n
—1/2 /2 0

The integral | can be expressed as a contour integral about the unit circle on the complex plane
by use of the complex variabte= €°,

1 7§ (1+2%?
4 ) z2(z2-2inz - 1) ¢
The identity (6.4) can be founded readily by residue theorem.

(B2
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